Streamlined Expressed Protein Ligation Using Split Inteins
نویسندگان
چکیده
Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.
منابع مشابه
Structure-based engineering and comparison of novel split inteins for protein ligation.
Protein splicing is an autocatalytic process involving self-excision of an internal protein domain, the intein, and concomitant ligation of the two flanking sequences, the exteins, with a peptide bond. Protein splicing can also take place in trans by naturally split inteins or artificially split inteins, ligating the exteins on two different polypeptide chains into one polypeptide chain. Protei...
متن کاملNature's recipe for splitting inteins.
Protein splicing in trans by split inteins has increasingly become a powerful protein-engineering tool for protein ligation, both in vivo and in vitro. Over 100 naturally occurring and artificially engineered split inteins have been reported for protein ligation using protein trans-splicing. Here, we review the current status of the reported split inteins in order to delineate an empirical or r...
متن کاملSegmental isotopic labelling of a multidomain protein by protein ligation by protein trans-splicing.
Segmental isotopic labelling is a powerful method for the incorporation of stable isotopes into particular regions within proteins for NMR detection, thereby reducing the complexity of NMR spectra and offering the potential to perform sequential assignments. Here we have demonstrated segmental isotopic labelling of a domain in a multidomain protein both in vivo and in vitro through protein liga...
متن کاملIntein applications: from protein purification and labeling to metabolic control methods.
The discovery of inteins in the early 1990s opened the door to a wide variety of new technologies. Early engineered inteins from various sources allowed the development of self-cleaving affinity tags and new methods for joining protein segments through expressed protein ligation. Some applications were developed around native and engineered split inteins, which allow protein segments expressed ...
متن کاملIn Vivo and In Vitro Protein Ligation by Naturally Occurring and Engineered Split DnaE Inteins
BACKGROUND Protein trans-splicing by naturally occurring split DnaE inteins is used for protein ligation of foreign peptide fragments. In order to widen biotechnological applications of protein trans-splicing, it is highly desirable to have split inteins with shorter C-terminal fragments, which can be chemically synthesized. PRINCIPAL FINDINGS We report the identification of new functional sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 135 شماره
صفحات -
تاریخ انتشار 2013